
Functions

#include<stdio.h>

 void abc(); //function prototype declaration

FUNCTION SYNTAX

void main()

 {

 abc(); //function call

 printf(”I am main line!”);
 }

void abc() //function definition

 {

 Printf(“I am function body \n”);
 }

#include<stdio.h>

 void abc(); //function prototype declaration

 void main()

 {

 abc(); //function call

 printf(”I am main line!”);
 }

 void abc() //function definition

 {

 Print(“I am function body \n”);
 }

FUNCTION SYNTAX

#include<stdio.h>

#include<conio.h>

add(); //declaration

void main()

{

clrscr();

add(); //calling

getch();

}

add() //definition

{

int a,b,c;

printf(“Enter two no. to add");
scanf("%d%d",&a,&b);

c=a+b;

printf("%d",c);

}

FUNCTION FOR ADDTION

#include<stdio.h>

#include<conio.h>

add();

sub();

mul();

div();

void main()

{

clrscr();

add();

sub();

mul();

div();

getch();

}

add()

{

int a,b,c;

printf("Enter two no. for Addition");

scanf("%d%d",&a,&b);

c=a+b;

printf("Addition is : %d",c);

}

FUNCTION FOR ADDTION

sub()

{

int a,b,c;

printf("Enter two no. for Substraction");

scanf("%d%d",&a,&b);

c=a-b;

printf("Substraction is : %d",c); }

mul()

{

int a,b,c;

printf("Enter two no for Multiplication");

scanf("%d%d",&a,&b);

c=a*b;

printf("Multiplication is : %d",c); }

div()

{

int a,b,c;

printf("Enter Two no for Division");

scanf("%d%d",&a,&b);

c=a/b;

printf("division is : %d",c);

}

FUNCTION CALL

Passing value between functions

• We can communicate between the calling and the

called functions by passing the parameters.

There are two ways to pass parameters to a function:

1. CALL BY VALUE:

2. CALL BY REFERENCE:

CALL BY VALUE:

•You actually pass a copy of the variable to the function

modifies the copy the original remains unaltered.

CALL BY REFERENCE:

•Call by reference mechanism is used when you want

functions to do the changes in called parameters and reflect

those changes back to the calling function .

• In this case addresses (pointer) of the variable are passed

to function so that function can work directly over the

addresses.

Passing value between functions

CALL BY VALUE

#include<stdio.h>

#include<conio.h>

int square(int x);

void main() //main function

{

int a,b;

clrscr();

printf("enter any value:\n");

scanf("%d",&a);

b=square(a); //calling by value

printf("square is %d “,b);
getch(); }

int square(int x)

{

int y;

y=x*x;

return(y);

}

Example - Call by Value

PASSING ARGUMENTS TO FUNCTION

How to Pass arguments to a function ?

Example: User-defined function
#include <stdio.h>

int addNumbers(int a, int b); //function prototype

void main()

{

int n1,n2,sum;

printf("Enters two numbers: ");

scanf("%d %d",&n1,&n2);

sum = addNumbers(n1, n2); //function call

printf("sum = %d",sum);

getch();

}

int addNumbers(int a, int b)//function definition

{

int result;

result = a+b;

return result; // return statement

}

Example: User-defined function

RETURN STATEMENT IN FUNCTION

Return statement of a function

#include <stdio.h>

void swap(int p1,int p2);

void main() //main function

{

int a=10, b=20;

printf("before swaping value of a=%d and b=%d\n",a,b);

swap(a,b); //calling by value

printf("\n\n values of a=%d and b=%d\n",a,b);

getch();

}

Example - Call by Value

void swap(int p1, int p2) //function method

{

int c;

c =p1;

p1=p2;

p2=c;

printf("\n after swapping value of a(p1)=%d and b(p2)=%d\n",p1,p2);

}

Example - Call by Value

CALL BY REFERENCE

void swap(int *p1,int *p2);

void main() //main function

{

int a=10;

int b=20;

printf("\n before value of a:%d and value of b:%d\n",a,b);

swap(&a,&b); //calling by reference

printf("\n value of a(p1):%d and value of b(p2):%d \n",a,b);

getch();

}

Example - Call by Reference

void swap(int *p1,int *p2) //function/method

{

int c;

c = *p1;

*p1 = *p2;

*p2 = c;

printf("after swaping value of a(p1):%d and value of

b(p2):%d\n",*p1,*p2);

}

Example - Call by Reference

C Recursion

• A function that calls itself is known as a recursive

function. And, this technique is known as recursion.

• The recursion continues until some condition is met

to prevent it.

• To prevent infinite recursion, if...else statement (or

similar approach) can be used where one branch

makes the recursive call, and other doesn't.

How does Recursion work ?

#include <stdio.h>

factorial(int i)

{

 if(i <= 1)

 {

 return 1;

 }

 return i * factorial(i--);

}

void main()

{

 int i = 5;

printf("Factorial of %d is %d\n", i,

factorial(i));

getch();

}

use loops instead of recursion. recursion is usually much slower.

Factorial

Feature of recursion:

• there should be at least one if statement used to Terminate

recursion.

It does not contain any looping statement.

Advantage of recursion:

• It is easy to use

• It represent compact programming structures.

• It can be applied to calculate factorial of a a,

• Fibonacci series.

Disadvantage of recursion:

• It is slower than that of looping statement because each time

function is called.

GETC() & PUTC()

FUNCTION

#include<stdio.h>

void main ()

 {

 char c;

 printf("Enter character: ");

 c = getc(stdin);

 printf("Character entered: ");

 putc(c, stdout);

 getch();

}

Getc() & putc() function

#include<stdio.h>

#include<conio.h>

void main()

{

char a[]="hello";

clrscr();

int i= 0;

while(a[i])

putc(a[i++],stdout);

getch();

}

Getc() & putc() function

THANKS

